Third Semester B.E. Degree Examination, Dec.08/Jan.09 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions selecting at least 2 questions from each part.

2. Draw equivalent circuit wherever necessary.

PART - A

1 a. Explain the different diode equivalent circuits with necessary approximations if any.

(06 Marks)

b. Explain junction capacitance with reference to a PN - diode.

(06 Marks)

c. Sketch the waveform of V₀ for the circuit below.

(08 Marks)

- 2 a. Explain with help of load line the effect of variation of V_{CC}, I_B on Q-pt of a transistor. (06 Marks)
 - b. For the voltage Feedback network below determine I_C, V_{CE}, V_C, V_E.

(08 Marks)

Fig. Q. No. 2b

c. Derive expression for S_{ICO} for a Voltage Divider bias circuit.

(06 Marks

- 3 a. Draw r_e and h parameter models of a transistor in CE mode. Give relation between r parameters and h parameters.
 - b. A voltage divider biased amplifier has $V_{CC}=20V$, $R_1=220k\Omega$, $R_2=56k\Omega$, $R_C=6.8k\Omega$ $R_E=2.2k\Omega$. The Silicon transistor used has $\beta=180$ and $r_0=70k\Omega$.

Find: i) ac emitter diode resistance, re.

ii) Input impedance.

iii) Voltage Gain. Draw the re-model equivalent circuit.

(10 Marks

- c. Given a packaged amplifier below, find
 - i) Voltage gain with $R_L = 4k\Omega$.
 - ii) Voltage gain with $R_L = 22k\Omega$.

Comment on the result of Part (i) and (ii)

(05 Marks)

- a. Explain low frequency response of BJT amplifier and give expression for lower cut-off frequency due to C_C, C_E and C_S. (10 Marks)
 - b. Obtain expression for miller effect input and miller effect output capacitance.

PART - B

- 5 a. With necessary equivalent diagram obtain the expression for Z_{in}, A_v, Z_o for a Darlington Emitter follower. (08 Marks)
 - b. What are the effects of negative feedback?

(06 Marks)

(10 Marks)

c. Obtain expression for Z_{in}, Z_o for a voltage - series feedback.

(06 Marks)

- 6 a. What are the classification of Power Amplifiers based on the location of Q-pt? Also indicate the operating cycle in each case. (06 Marks)
 - b. Prove that the maximum conversion efficiency in class-B power amplifier is 78.5%.

 (08 Marks)
 - c. A power amplifier has harmonic distortions $D_2 = 0.1$, $D_3 = 0.02$, $D_4 = 0.01$, the fundamental current $I_1 = 4A$ and $R_L = 8\Omega$. Calculate the total harmonic distortion, fundamental power and total power. (06 Marks)
- 7 a. Explain characteristics of a quartz crystal. With a neat diagram explain the crystal oscillator in Parallel resonant circuits. (10 Marks)
 - b. Explain how a feedback circuit can be used as oscillator.

(04 Marks)

- c. Calculate operating frequency of a BJT phase Shift oscillator for $R = 6k\Omega$, C = 1500pF, $R_C = 18k\Omega$. Determine minimum current gain of transistor required for sustained oscillations.
- 8 a. Define transconductance g_m . Derive expression for g_m .

(06 Marks)

- b. A JFET has $g_m = 6mV$ at $V_{GS} = -1V$. Find I_{DSS} if pintch off voltage $V_P = -2.5V$. (04 Marks)
- c. With necessary equivalent circuit obtain the expression for A_v, Z_{in}, Z_o for a fixed-biased JFET Amplifier.